4.5 Article

Overall dynamic properties of three-dimensional periodic elastic composites

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2011.0440

Keywords

homogenization; periodic elastic composites; wave propagation

Funding

  1. DARPA AFOSR [FA9550-09-1-0709]
  2. RDECOM [W91CRB-10-1-0006]

Ask authors/readers for more resources

This article presents a method for the homogenization of three-dimensional periodic elastic composites. It allows for the evaluation of the averaged overall frequency-dependent dynamic material constitutive tensors relating the averaged dynamic field variable tensors of velocity, strain, stress and linear momentum. Although the form of the dynamic constitutive relation for three-dimensional elastodynamic wave propagation has been known, this is the first time that explicit calculations of the effective parameters (for three dimensions) are presented. We show that for three-dimensional periodic composites, the overall compliance (stiffness) tensor, as produced directly by our formulation, is Hermitian, regardless of whether the corresponding unit cell is geometrically or materially symmetric. Overall, mass density is shown to be a tensor and, like the overall compliance tensor, always Hermitian. The average strain and linear momentum tensors are, however, coupled, and the coupling tensors are shown to be each others' Hermitian transpose. Finally, we present a numerical example of a three-dimensional periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment illustrating the frequency dependence of the constitutive parameters. We also show that the effective properties calculated in this paper satisfy the dispersion relation of the composite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available