4.5 Article

Quasi-steady-state and steady-state models for heat and moisture transport in textile assemblies

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2010.0011

Keywords

quasi-steady state; fibrous textile materials; multi-component flow; clothing assemblies; finite-volume method; condensation/evaporation

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [CityU 101906]

Ask authors/readers for more resources

Heat and moisture transport plays an important role in many engineering areas. In many sweat transport systems, such as clothing assembly, the moisture concentration (or sweat) is relative small and the air concentration reaches a steady state quickly. In this paper, a quasi-steady-state multi-component and multi-phase model for heat and moisture transport in porous textile materials with phase change is proposed. An analytic form of the air concentration is obtained in terms of the mixture gas (vapour and air) concentration and temperature. The new model is described in the form of a single-component flow with an extra air resistance (permeability), involving only the vapour concentration (or pressure), temperature and water content. The existence of the classical positive solutions of the corresponding steady-state model is proved. Two types of clothing assemblies are investigated numerically. The comparisons among the experimental measurements and numerical results of the fully dynamic model, the proposed quasi-steady-state model and steady-state model are also presented. Numerical results show that the proposed quasi-steady-state model is realistic and less complicated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available