4.5 Article

Time-domain approach to the forward scattering sum rule

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2009.0680

Keywords

sum rule; forward scattering; physical bounds; dispersion

Ask authors/readers for more resources

The forward scattering sum rule relates the extinction cross section integrated over all wavelengths with the polarizability dyadics. It is useful for deriving bounds on the interaction between scatterers and electromagnetic fields, antenna bandwidth and directivity and energy transmission through sub-wavelength apertures. The sum rule is valid for linearly polarized plane waves impinging on linear, passive and time translational invariant scattering objects in free space. Here, a time-domain approach is used to clarify the derivation and the used assumptions. The time-domain forward scattered field defines an impulse response. Energy conservation shows that this impulse response is the kernel of a passive convolution operator, which implies that the Fourier transform of the impulse response is a Herglotz function. The forward scattering sum rule is finally constructed from integral identities for Herglotz functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available