4.7 Article

Microstructure design and mechanical properties in a near-α Ti-4Mo alloy

Journal

ACTA MATERIALIA
Volume 97, Issue -, Pages 291-304

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.06.043

Keywords

Ti alloy; Microstructure engineering; Mechanical properties; Microstructure characterization; Electron microscopy; Atom probe tomography

Ask authors/readers for more resources

We study the effects of different heat treatment routes on microstructure engineering and the resulting mechanical response in a plain binary Ti-4Mo (wt%) model alloy. We observe a broad variety of microstructure formation mechanisms including diffusion driven allotropic phase transformations as well as shear and/or diffusion dominated modes of martensitic transformations, enabling a wealth of effective microstructure design options even in such a simple binary Ti alloy. This wide variety of microstructures allows tailoring the mechanical properties ranging from low yield strength (350 MPa) and high ductility (30-35% tensile elongation) to very high yield strength (1100 MPa) and medium ductility (10-15% tensile elongation) as well as a variety of intermediate states. Mechanical testing and microstructure characterization using optical microscopy, scanning electron microscopy based techniques, transmission electron microscopy and atom probe tomography were performed revealing that minor variations in the heat treatment cause significant changes in the resulting microstructures (e.g. structural refinement, transition between diffusive and martensitic transformations). The experimental results on microstructure evolution during the applied different heat treatment routes are discussed with respect to the mechanical properties. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available