4.5 Article

Oscillating flames: multiple-scale analysis

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2008.0388

Keywords

flame acceleration; deflagration-to-detonation transition; oscillating flame; galloping

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Network of Centres of Excellence

Ask authors/readers for more resources

A complete multiple-scale solution is constructed for the one-dimensional problem of an oscillating flame in a tube, ignited at a closed end, with the second end open. The flame front moves into the unburnt mixture at a constant burning velocity relative to the mixture ahead, and the heat release is constant. The solution is based upon the assumption that the propagation speed multiplied by the expansion ratio is small compared with the speed of sound. This approximate solution is compared with a numerical solution for the same physical model, assuming a propagation speed of arbitrary magnitude, and the results are close enough to confirm the validity of the approximate solution. Because ignition takes place at the closed end, the effect of thermal expansion is to push the column of fluid in the tube towards the open end. Acoustics set in motion by the impulsive start of the column of fluid play a crucial role in the oscillation. The analytical solution also captures the subsequent interaction between acoustics and the reaction front, the effect of which does not appear to be as significant as that of the impulsive start, however.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available