4.5 Article

Micromechanics of friction: effects of nanometre-scale roughness

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2007.0364

Keywords

micromechanics of friction; nanometre-scale roughness; nanometre-scale plasticity; capillary effects; scale effects

Ask authors/readers for more resources

Nanometre-scale roughness on a solid surface has significant effects on friction, since intersurface forces operate predominantly within a nanometre-scale gap distance in frictional contact. To study the effects of nanometre-scale roughness, two novel atomic force microscope friction experiments were conducted, each using a gold surface sliding against a. at mica surface as the representative friction system. In one of the experiments, a pillar-shaped single nano-asperity of gold was used to measure the molecular-level frictional behaviour. The adhesive friction stress was measured to be 264 MPa and the molecular friction factor 0.0108 for a direct gold mica contact. The nano-asperity was flattened in contact, although its hardness at this length scale is estimated to be 3.68 GPa. It was found that such a high pressure could be reached with the help of condensed water capillary forces. In the second experiment, a micrometre-scale asperity with nanometre-scale roughness exhibited a single-asperity-like response of friction. However, the apparent frictional stress, 40.5 MPa, fell well below the Hurtado-Kim model prediction of 208 245 MPa. In addition, the multiple nano-asperities were flattened during the frictional process, exhibiting load-and slip-history-dependent frictional behaviour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available