4.4 Article Proceedings Paper

Epigenomics: a basis for understanding individual differences?

Journal

PROCEEDINGS OF THE NUTRITION SOCIETY
Volume 67, Issue 4, Pages 390-394

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0029665108008744

Keywords

Epigenetic marks; DNA methylation; Histone modifications; Cellular memory; Inter-individual differences

Funding

  1. Biotechnology and Biological Sciences Research Council Funding Source: Medline

Ask authors/readers for more resources

Epigenetics encompasses changes to marks on the genome that are copied from one cell generation to the next, which may alter gene expression but which do not involve changes in the primary DNA sequence. These marks include DNA methylation (methylation of cytosines within CpG dinucleotides) and post-translational modifications (acetylation, methylation, phosphorylation and ubiquitination) of the histone tails protruding from nucleosome cores. The sum of genome-wide epigenetic patterns is known as the epigenome. It is hypothesised that altered epigenetic marking is a means through which evidence of environmental exposures (including nutritional status and dietary exposure) is received and recorded by the genome. At least some of these epigenetic marks are remembered through multiple cell generations and their effects may be revealed in altered gene expression and cell function. Altered epigenetic marking allows plasticity of phenotype in a fixed genotype. Despite their identical genotypes, monozygotic twins show increasing epigenetic diversity with age and with divergent lifestyles. Differences in epigenetic markings may explain some inter-individual variation in disease risk and in response to nutritional interventions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available