4.8 Article

Asymptotic theory of rerandomization in treatment-control experiments

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1808191115

Keywords

causal inference; covariate balance; geometry of rerandomization; Mahalanobis distance; quantile range

Funding

  1. National Science Foundation [DMS 1713152, IIS-1409177]
  2. National Institute of Allergy and Infectious Diseases/NIH [R01AI102710]
  3. Office of Naval Research [N00014-17-1-2131]
  4. Google Faculty Fellowship

Ask authors/readers for more resources

Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. We develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and truncated Gaussian random variables. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We demonstrate that, compared with complete randomization, rerandomization reduces the asymptotic quantile ranges of the difference-in-means estimator. Moreover, our work constructs accurate large-sample confidence intervals for the average causal effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available