4.8 Article

Metal-free class le ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1811993115

Keywords

DNA biosynthesis; semiquinone; DOPA

Funding

  1. Searle Scholars Program
  2. National Institutes of Health (NIH) [GM119707]
  3. NIH Ruth L. Kirschstein Postdoctoral National Research Service Award [GM116353]
  4. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  5. National Cancer Institute [ACB-12002]
  6. National Institute of General Medical Sciences [AGM-12006]
  7. NIH Office of Research Infrastructure Programs High-End Instrumentation Grant [1S10OD012289-01A1]
  8. Michigan Economic Development Corporation
  9. Michigan Technology TriCorridor Grant [085P1000817]

Ask authors/readers for more resources

All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, beta; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, Nrdl, to provide the superoxide from O-2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the alpha subunit to a radical (Cys.). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic la enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys. in its alpha subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA.) in beta. The three-electron oxidation producing DOPA. occurs in Escherichia coli only if the beta is coexpressed with the Nrdl activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available