4.8 Article

Isolating the roles of movement and reproduction on effective connectivity alters conservation priorities for an endangered bird

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1800183115

Keywords

connectivity; dispersal; gene flow; immigrant; network

Funding

  1. US Army Corps of Engineers
  2. Florida Fish and Wildlife Conservation Commission
  3. US Fish and Wildlife Service
  4. St Johns River Water Management District
  5. US Geological Survey's Greater Everglades Priority Ecosystems Science

Ask authors/readers for more resources

Movement is important for ecological and evolutionary theory as well as connectivity conservation, which is increasingly critical for species responding to environmental change. Key ecological and evolutionary outcomes of movement, such as population growth and gene flow, require effective dispersal: movement that is followed by successful reproduction. However, the relative roles of movement and postmovement reproduction for effective dispersal and connectivity remain unclear. Here we isolate the contributions of movement and immigrant reproduction to effective dispersal and connectivity across the entire breeding range of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus). To do so, we unite mark-resight data on movement and reproduction across 9 years and 27 breeding patches with an integrated model that decomposes effective dispersal into its hierarchical levels of movement, postmovement breeding attempt, and postmovement reproductive success. We found that immigrant reproduction limits effective dispersal more than movement for this endangered species, demonstrating that even highly mobile species may have limited effective connectivity due to reduced immigrant reproduction. We found different environmental limitations for the reproductive component of effective dispersal compared with movement, indicating that different conservation strategies may be needed when promoting effective dispersal rather than movement alone. We also demonstrate that considering immigrant reproduction, rather than movement alone, alters which patches are the most essential for connectivity, thereby changing conservation priorities. These results challenge the assumption that understanding movement alone is sufficient to infer connectivity and highlight that connectivity conservationmay require not only fostering movement but also successful reproduction of immigrants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available