4.8 Article

Interleukin 4 is inactivated via selective disulfide-bond reduction by extracellular thioredoxin

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1805288115

Keywords

interleukin 4; thioredoxin; disulfide bond; macrophages; M2

Funding

  1. NIH [R01 DK063158, R01 DK105263]

Ask authors/readers for more resources

Thioredoxin 1 (TRX), an essential intracellular redox regulator, is also secreted by mammalian cells. Recently, we showed that TRX activates extracellular transglutaminase 2 via reduction of an allosteric disulfide bond. In an effort to identify other extracellular substrates of TRX, macrophages derived from THP-1 cells were treated with NP161, a small-molecule inhibitor of secreted TRX. NP161 enhanced cytokine outputs of alternatively activated macrophages, suggesting that extracellular TRX regulated the activity of interleukin 4 (IL-4) and/or interleukin 13 (IL-13). To test this hypothesis, the C35S mutant of human TRX was shown to form a mixed disulfide bond with recombinant IL-4 but not IL-13. Kinetic analysis revealed a k(cat)/K-M value of 8.1 mu M-1.min(-1) for TRX-mediated recognition of IL-4, which established this cytokine as the most selective partner of extracellular TRX to date. Mass spectrometry identified the C46-C99 bond of IL-4 as the target of TRX, consistent with the essential role of this disulfide bond in IL-4 activity. To demonstrate the physiological relevance of our biochemical findings, recombinant TRX was shown to attenuate IL-4-dependent proliferation of cultured TF-1 erythroleukemia cells and also to inhibit the progression of chronic pancreatitis in an IL-4-driven mouse model of this disease. By establishing that IL-4 is posttranslationally regulated by TRX-promoted reduction of a disulfide bond, our findings highlight a novel regulatory mechanism of the type 2 immune response that is specific to IL-4 over IL-13.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available