4.8 Article

Hybridization gap and Fano resonance in SmB6

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1402643111

Keywords

-

Funding

  1. Max Planck-POSTECH Center for Complex Phase Materials
  2. National Science Foundation Grant [DMR-0801253]

Ask authors/readers for more resources

Hybridization between conduction electrons and the strongly interacting f-electrons in rare earth or actinide compounds may result in new states of matter. Depending on the exact location of the concomitant hybridization gap with respect to the Fermi energy, a heavy fermion or an insulating ground state ensues. To study this entanglement locally, we conducted scanning tunneling microscopy and spectroscopy (STS) measurements on the Kondo insulator SmB6. The vast majority of surface areas investigated were reconstructed, but infrequently, patches of varying sizes of nonreconstructed Sm- or B-terminated surfaces also were found. On the smallest patches, clear indications for the hybridization gap with logarithmic temperature dependence (as expected for a Kondo system) and for inter-multiplet transitions were observed. On nonreconstructed surface areas large enough for coherent cotunneling, we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure, not proving but leaving open the possibility of the existence of a topologically protected surface state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available