4.8 Article

Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1403361111

Keywords

humoral immunity; restriction factor; antibody repertoire profiling; affinity maturation; Friend retrovirus

Funding

  1. National Institutes of Health (NIH) [R01 AI090795]
  2. University of Colorado Department of Medicine Early Career Scholar Program
  3. NIH Division of Intramural Research
  4. American Society for Microbiology

Ask authors/readers for more resources

Somatic hypermutation (SHM) is an integral process in the development of high-affinity antibodies that are important for recovery from viral infections and vaccine-induced protection. Ig SHM occurs predominantly in germinal centers (GC) via the enzymatic activity of activation-induced deaminase (AID). In contrast, the evolutionarily related apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3 (APOBEC3) proteins are known to restrict retroviruses, including HIV-1. We previously reported that mouse APOBEC3 encodes Recovery from Friend virus 3 (Rfv3), a classical resistance gene in mice that promotes the neutralizing antibody response against retrovirus infection. We now show that APOBEC3/Rfv3 complements AID in driving Ig SHM during retrovirus infection. Analysis of antibody sequences from retrovirus-specific hybridomas and GC B cells from infected mice revealed Ig heavy-chain V genes with significantly increased C-to-T and G-to-A transitions in wild-type as compared with APOBEC3-defective mice. The context of the mutations was consistent with APOBEC3 but not AID mutational activity. These findings help explain the role of APOBEC3/Rfv3 in promoting the neutralizing antibody responses essential for recovery from retroviral infection and highlight APOBEC3-mediated deamination as a previously unidentified mechanism for antibody diversification in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available