4.8 Article

Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1321854111

Keywords

double-strand break repair; structural DNA variation

Funding

  1. National Science Foundation Plant Genome Program [0607123, 043707-01]
  2. Direct For Biological Sciences
  3. Division Of Integrative Organismal Systems [1127079, 0607123] Funding Source: National Science Foundation

Ask authors/readers for more resources

The insertion of DNA into a genome can result in the duplication and dispersal of functional sequences through the genome. In addition, a deeper understanding of insertion mechanisms will inform methods of genetic engineering and plant transformation. Exploiting structural variations in numerous rice accessions, we have inferred and analyzed intermediate length (10-1,000 bp) insertions in plants. Insertions in this size class were found to be approximately equal in frequency to deletions, and compound insertion-deletions comprised only 0.1% of all events. Our findings indicate that, as observed in humans, tandem or partially tandem duplications are the dominant form of insertion (48%), although short duplications from ectopic donors account for a sizable fraction of insertions in rice (38%). Many nontandem duplications contain insertions from nearby DNA (within 200 bp) and can contain multiple donor sources-some distant-in single events. Although replication slippage is a plausible explanation for tandem duplications, the end homology required in such a model is most often absent and rarely is >5 bp. However, end homology is commonly longer than expected by chance. Such findings lead us to favor a model of patch-mediated double-strandbreak creation followed by nonhomologous end-joining. Additionally, a striking bias toward 31-bp partially tandem duplications suggests that errors in nucleotide excision repair may be resolved via a similar, but distinct, pathway. In summary, the analysis of recent insertions in rice suggests multiple underappreciated causes of structural variation in eukaryotes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available