4.8 Article

Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1414422112

Keywords

influenza A virus; TGF-beta; coinfection; fibronectin binding protein; bacterial adherence

Funding

  1. National Natural Science Foundation of China Grant [31170845]

Ask authors/readers for more resources

Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-beta. Because TGF-beta can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-beta during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and alpha 5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-beta signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-beta. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-beta signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-beta, leading to increased bacterial loading in the lungs. Our results suggest that TGF-beta and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available