4.8 Article

Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1315015110

Keywords

-

Funding

  1. MRSEC Program of the National Science Foundation (NSF) [DMR 1121053]
  2. National Institute of Health [R01-DE018468]
  3. NSF

Ask authors/readers for more resources

The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force-distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = -4 to -9 mJ/m(2)) but only weakly to the OH-terminated SAM surfaces through H-bonding (adhesive interaction energy <= -0.5 mJ/m(2)). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other non-polar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available