4.8 Article

RecA acts as a switch to regulate polymerase occupancy in a moving replication fork

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1303301110

Keywords

DNA repair; lesion bypass; recombinase; translesion polymerase

Funding

  1. National Institutes of Health [GM39939, GM21422, ESO12259]

Ask authors/readers for more resources

This report discovers a role of Escherichia coli RecA, the cellular recombinase, in directing the action of several DNA polymerases at the replication fork. Bulk chromosome replication is performed by DNA polymerase (Pol) III. However, E. coli contains translesion synthesis (TLS) Pols II, IV, and V that also function with the helicase, primase, and sliding clamp in the replisome. Surprisingly, we find that RecA specifically activates replisomes that contain TLS Pols. In sharp contrast, RecA severely inhibits the Pol III replisome. Given the opposite effects of RecA on Pol III and TLS replisomes, we propose that RecA acts as a switch to regulate the occupancy of polymerases within a moving replisome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available