4.8 Article

ParP prevents dissociation of CheA from chemotactic signaling arrays and tethers them to a polar anchor

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1315722111

Keywords

pole development; protein localization; protein inheritance; protein sequestration; diffusion and capture

Funding

  1. National Institute of Allergy and Infectious Diseases [R37 AI-042347]
  2. Howard Hughes Medical Institute
  3. Villum Kann Rasmussen foundation
  4. Deutsche Forschungsgemeinschaft
  5. Howard Hughes Medical Institute Exceptional Opportunities for Exceptional Students program

Ask authors/readers for more resources

Bacterial chemotaxis proteins are organized into ordered arrays. In peritrichous organisms, such as Escherichia coli, stochastic assembly processes are thought to account for the placement of chemotaxis arrays, which are nonuniformly distributed. In contrast, we previously found that chemotactic signaling arrays in polarly flagellated vibrios are uniformly polar and that array localization is dependent on the ParA-like ATPase ParC. However, the processes that enable ParC to facilitate array localization have not been described. Here, we show that a previously uncharacterized protein, ParP, interacts with ParC and that ParP is integral to array localization in Vibrio parahaemolyticus. ParC's principal contribution to chemotaxis appears to be via positioning of ParP. Once recruited to the pole by ParC, ParP sequesters arrays at this site by capturing and preventing the dissociation of chemotactic signaling protein (CheA). Notably, ParP also stabilizes chemotactic protein complexes in the absence of ParC, indicating that some of its activity is independent of this interaction partner. ParP recruits CheA via CheA's localization and inheritance domain, a region found only in polarly flagellated organisms that encode ParP, ParC, and CheA. Thus, a tripartite (ParC-ParP-CheA) interaction network enables the polar localization and sequestration of chemotaxis arrays in polarly flagellated organisms. Localization and sequestration of chemotaxis clusters adjacent to the flagella-to which the chemotactic signal is transmitted-facilitates proper chemotaxis as well as accurate inheritance of these macromolecular machines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available