4.8 Article

Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1310642110

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [WI3285/2-1]
  2. European Molecular Biology Organization
  3. Cluster of Excellence [Exc114/2]
  4. Estonian Science Foundation [9289]
  5. European Social Fund Program Mobilitas [MJD144, MJD99]
  6. Marie Curie FP7-PEOPLE-2011-IEF Postdoctoral Fellowship
  7. AXA Research Fund Postdoctoral Fellowship
  8. European Regional Development Fund via the Center of Excellence in Chemical Biology

Ask authors/readers for more resources

Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available