4.8 Article

Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11)

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1319123110

Keywords

-

Funding

  1. US Public Health Service [R21CA171008, ES010337, GM086713, GM100481, AI043477]
  2. Canadian Institutes of Health Research [MOP-84338, MSH95330]
  3. Canada Foundation for Innovation Project [17745]
  4. Laval University

Ask authors/readers for more resources

Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1(Delta Hep)) and the intestine (Ugt1(Delta GI)). Control (Ugt1(F/F)), Ugt1(Delta Hep), and Ugt1(Delta GI) adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11-treated Ugt1(Delta Hep) mice showed a similar lethality rate to the CPT-11-treated Ugt1(F/F) mice. However, Ugt1(Delta GI) mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available