4.8 Article

Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1216948110

Keywords

flippase; P4-ATPase; ATP8A1; ATP8A2

Funding

  1. National Institutes of Health [GM62367]
  2. Cellular and Molecular Microbiology Training Program [T32AI007611-11]
  3. Vanderbilt Ingram Cancer Center [P30 CA68485]
  4. Vanderbilt Digestive Disease Research Center [DK058404]

Ask authors/readers for more resources

Most P-type ATPases pump specific cations or heavy metals across a membrane to form ion gradients. However, the type IV P-type ATPases evolved the ability to transport specific phospholipid substrates rather than cations and function to establish plasma membrane asymmetry in eukaryotic cells. The mechanism for how a P-type ATPase, or any other transporter, can recognize and flip a phospholipid substrate is unclear. Here, through a combination of genetic screening and directed mutagenesis with the type IV P-type ATPases Dnf1 and Drs2 from budding yeast, we identify more than a dozen residues that determine headgroup specificity for phospholipid transport. These residues cluster at two interfacial regions flanking transmembrane segments 1-4 and lie outside of the canonical substrate binding site operating in cation pumps. Our data imply the presence of two substrate-selecting gates acting sequentially on opposite sides of the membrane: an entry gate, where phospholipid is initially selected from the extracellular leaflet, and an exit gate at the cytosolic leaflet. The entry and exit gates act cooperatively but imperfectly, with neither being able to restrict phosphatidylserine selection completely when the opposing gate is tuned to permit it. This work describes a unique transport mechanism for a P-type ATPase and provides insight into how integral membrane proteins can recognize and transport phospholipid substrate across a lipid bilayer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available