4.8 Article

Reintroducing domesticated wild mice to sociality induces adaptive transgenerational effects on MUP expression

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1310427110

Keywords

social selection; sexy sons; epigenetics

Funding

  1. National Science Foundation [0909801, 0914244, 0918969]
  2. National Institutes of Health [R01-GM039578, R01-GM109500]
  3. Direct For Biological Sciences
  4. Division Of Environmental Biology [0918969] Funding Source: National Science Foundation
  5. Division Of Integrative Organismal Systems
  6. Direct For Biological Sciences [0909801] Funding Source: National Science Foundation
  7. Office Of Internatl Science &Engineering
  8. Office Of The Director [0914244] Funding Source: National Science Foundation

Ask authors/readers for more resources

When brought into captivity, wild animals can adapt to domestication within 10 generations. Such adaptations may decrease fitness in natural conditions. Many selective pressures are disrupted in captivity, including social behavioral networks. Although lack of sociality in captivity appears to mediate domestication, the underlying mechanisms are not well understood. Additionally, determining the contribution of genetic inheritance vs. transgenerational effects during relaxed selection may provide insight into the flexibility of adaptation. When wild-derived mice kept under laboratory conditions for eight generations were reintroduced to sociality and promiscuity (free mate choice), they adapted within two generations. Fitness assessments between this promiscuous lineage and a monogamous laboratory lineage revealed male-specific effects. Promiscuous-line males had deficits in viability, but a striking advantage in attracting mates, and their scent marks were also more attractive to females. Here, we investigate mechanistic details underlying this olfactory signal and identify a role of major urinary protein (MUP) pheromones. Promiscuous-line males inherit higher MUP expression than monogamous-line males through transgenerational inheritance. Sociality-driven maternal and paternal effects reveal intriguing conflicts among parents and offspring over pheromone expression. MUP up-regulation is not driven by hormone-driven transduction pathways, but rather is associated with reduction in DNA methylation of a CpG dinucleotide in the promoter. This reduction in methylation could enhance transcription by promoting the binding of transcription factor USF1 (upstream stimulatory factor 1). Finally, we experimentally demonstrate that increased MUP expression is a female attractant. These results identify molecular mechanisms guiding domestication and adaptive responses to fluctuating sociality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available