4.8 Article

Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1216898110

Keywords

metabolic engineering; plastid transformation; fruit development; fruit ripening

Funding

  1. European Union [METAPRO 244348]

Ask authors/readers for more resources

The engineering of complex metabolic pathways requires the concerted expression of multiple genes. In plastids (chloroplasts) of plant cells, genes are organized in operons that are coexpressed as polycistronic transcripts and then often are processed further into monocistronic mRNAs. Here we have used the tocochromanol pathway (providing tocopherols and tocotrienols, collectively also referred to as vitamin E) as an example to establish principles of successful multigene engineering by stable transformation of the chloroplast genome, a technology not afflicted with epigenetic variation and/or instability of transgene expression. Testing a series of single-gene constructs (encoding homogentisate phytyltransferase, tocopherol cyclase, and.-tocopherol methyltransferase) and rationally designed synthetic operons in tobacco and tomato plants, we (i) confirmed previous results suggesting homogentisate phytyltransferase as the limiting enzymatic step in the pathway, (ii) comparatively characterized the bottlenecks in tocopherol biosynthesis in transplastomic leaves and tomato fruits, and (iii) achieved an up to tenfold increase in total tocochromanol accumulation. In addition, our results uncovered an unexpected light-dependent regulatory link between tocochromanol metabolism and the pathways of photosynthetic pigment biosynthesis. The synthetic operon design developed here will facilitate future synthetic biology applications in plastids, especially the design of artificial operons that introduce novel biochemical pathways into plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available