4.8 Article

Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1218206110

Keywords

-

Funding

  1. Frederick National Laboratory for Cancer Research
  2. National Institutes of Health (NIH) [HHSN261200800001E, R01CA026038-32, U54CA143930, 2P01 HL073104-06]
  3. Singapore Ministry of Health's National Medical Research Council (NMRC) under its Singapore Translational Research (STaR) Investigator Award
  4. Singapore NMRC New Investigator Grant
  5. National Research Foundation Singapore
  6. Singapore Ministry of Education under the Research Centres of Excellence initiative

Ask authors/readers for more resources

Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry staining revealed that its protein levels were up-regulated compared with corresponding non-transformed tissues. Importantly, depletion of endogenous PDE4D with three independent shRNAs caused apoptosis and growth inhibition in multiple types of cancer cells, including breast, lung, ovary, endometrium, gastric, and melanoma, which could be rescued by reexpression of PDE4D. We further showed that antitumor events triggered by PDE4D suppression were lineage-dependently associated with Bcl-2 interacting mediator of cell death (BIM) induction and microphthalmia-associated transcription factor (MITF) down-regulation. Furthermore, ectopic expression of the PDE4D short isoform, PDE4D2, enhanced the proliferation of cancer cells both in vitro and in vivo. Moreover, treatment of cancer cells with a unique specific PDE4D inhibitor, 268, triggered massive cell death and growth retardation. Notably, these antineoplastic effects induced by either shRNAs or small molecule occurred preferentially in cancer cells but not in nonmalignant epithelial cells. These results suggest that although targeted by genomic homozygous microdeletions, PDE4D functions as a tumor-promoting factor and represents a unique targetable enzyme of cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available