4.8 Article

Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1301160110

Keywords

VA-TIRFM; FCS

Funding

  1. 973 Program [2011CB944600, 2011CB809103]
  2. Knowledge Innovation Program of the Chinese Academy of Sciences [KSCX2-EW-Q-20-2]
  3. National Nature Science Foundation of China Project Grant [31070326, 30821007]

Ask authors/readers for more resources

Ammonium is a preferred source of nitrogen for plants but is toxic at high levels. Plant ammonium transporters (AMTs) play an essential role in NH4+ uptake, but the mechanism by which AMTs are regulated remains unclear. To study how AMTs are regulated in the presence of ammonium, we used variable-angle total internal reflection fluorescence microscopy and fluorescence cross-correlation spectroscopy for single-particle fluorescence imaging of EGFP-tagged AMT1;3 on the plasma membrane of Arabidopsis root cells at various ammonium levels. We demonstrated that AMT1;3-EGFP dynamically appeared and disappeared on the plasma membrane as moving fluorescent spots in low oligomeric states under N-deprived and N-sufficient conditions. Under external high-ammonium stress, however, AMT1;3-EGFPs were found to amass into clusters, which were then internalized into the cytoplasm. A similar phenomenon also occurred in the glutamine synthetase mutant gln1;2 background. Single-particle analysis of AMT1;3-EGFPs in the clathrin heavy chain 2 mutant (chc2 mutant) and Flotllin1 artificial microRNA (Flot1 amiRNA) backgrounds, together with chemical inhibitor treatments, demonstrated that the endocytosis of AMT1;3 clusters induced by high-ammonium stress could occur mainly through clathrin-mediated endocytic pathways, but the contribution of microdomain-associated endocytic pathway cannot be excluded in the internalization. Our results revealed that the clustering and endocytosis of AMT1;3 provides an effective mechanism by which plant cells can avoid accumulation of toxic levels of ammonium by eliminating active AMT1;3 from the plasma membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available