4.8 Article

Hydrodynamic stretching of single cells for large population mechanical phenotyping

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1200107109

Keywords

flow cytometry; high-throughput; cytology; mechanophenotype

Funding

  1. Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research
  2. David and Lucile Packard Foundation
  3. Defense Advanced Research Projects Agency Young Faculty Award

Ask authors/readers for more resources

Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications. Here, we demonstrate an automated microfluidic technology capable of probing single-cell deformability at approximately 2,000 cells/s. The method uses inertial focusing to uniformly deliver cells to a stretching extensional flow where cells are deformed at high strain rates, imaged with a high-speed camera, and computationally analyzed to extract quantitative parameters. This approach allows us to analyze cells at throughputs orders of magnitude faster than previously reported biophysical flow cytometers and single-cell mechanics tools, while creating easily observable larger strains and limiting user time commitment and bias through automation. Using this approach we rapidly assay the deformability of native populations of leukocytes and malignant cells in pleural effusions and accurately predict disease state in patients with cancer and immune activation with a sensitivity of 91% and a specificity of 86%. As a tool for biological research, we show the deformability we measure is an early biomarker for pluripotent stem cell differentiation and is likely linked to nuclear structural changes. Microfluidic deformability cytometry brings the statistical accuracy of traditional flow cytometric techniques to label-free biophysical biomarkers, enabling applications in clinical diagnostics, stem cell characterization, and single-cell biophysics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available