4.8 Article

Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1114944109

Keywords

antibiotics; multidrug resistance; drug efflux; RND transporter

Funding

  1. Swiss National Foundation
  2. German Research Foundation [SFB 807]
  3. Swiss National Center of Competence in Research (NCCR) Structural Biology
  4. Forschungskredit der Universitat Zurich
  5. DFG (Cluster of Excellence Macromolecular Complexes at the Goethe-University Frankfurt) [EXC115]

Ask authors/readers for more resources

AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion. Binding of drugs has been shown at a periplasmic deep binding pocket in the T conformation. The initial drug-binding step and transport toward this drug-binding site has been elusive thus far. Here we report high resolution structures (1.9-2.25 angstrom) of AcrB/designed ankyrin repeat protein (DARPin) complexes with bound minocycline or doxorubicin. In the AcrB/doxorubicin cocrystal structure, binding of three doxorubicin molecules is apparent, with one doxorubicin molecule bound in the deep binding pocket of the T monomer and two doxorubicin molecules in a stacked sandwich arrangement in an access pocket at the lateral periplasmic cleft of the L monomer. This access pocket is separated from the deep binding pocket apparent in the T monomer by a switch-loop. The localization and conformational flexibility of this loop seems to be important for large substrates, because a G616N AcrB variant deficient in macrolide transport exhibits an altered conformation within this loop region. Transport seems to be a stepwise process of initial drug uptake in the access pocket of the L monomer and subsequent accommodation of the drug in the deep binding pocket during the L to T transition to the internal deep binding pocket of the T monomer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available