4.8 Article

Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1202747109

Keywords

biomass conversion; enzyme inhibition; enzyme synergy; alternative energy

Funding

  1. United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel
  2. Weizmann Institute of Science Alternative Energy Research Initiative (AERI)
  3. Israel Strategic Alternative Energy Foundation (I-SAEF)
  4. Israel Ministry of Science (IMOS) by the Israel Science Foundation and establishment of an Israeli Center of Research Excellence (I-CORE Center) [966/09, 159/07, 24/11, 152/11]

Ask authors/readers for more resources

The conversion of recalcitrant plant-derived cellulosic biomass into biofuels is dependent on highly efficient cellulase systems that produce near-quantitative levels of soluble saccharides. Similar to other fungal and bacterial cellulase systems, the multienzyme cellulosome system of the anaerobic, cellulolytic bacterium Clostridium thermocellum is strongly inhibited by the major end product cellobiose. Cellobiose-induced inhibition can be relieved via its cleavage to noninhibitory glucose by the addition of exogenous noncellulosomal enzyme beta-glucosidase; however, because the cellulosome is adsorbed to the insoluble substrate only a fraction of beta-glucosidase would be available to the cellulosome. Towards this end, we designed a chimeric cohesin-fused beta-glucosidase (BglA-CohII) that binds directly to the cellulosome through an unoccupied dockerin module of its major scaffoldin subunit. The beta-glucosidase activity is thus focused at the immediate site of cellobiose production by the cellulosomal enzymes. BglA-CohII was shown to retain cellobiase activity and was readily incorporated into the native cellulosome complex. Surprisingly, it was found that the native C. thermocellum cellulosome exists as a homooligomer and the high-affinity interaction of BglA-CohII with the scaffoldin moiety appears to dissociate the oligomeric state of the cellulosome. Complexation of the cellulosome and BglA-CohII resulted in higher overall degradation of microcrystalline cellulose and pretreated switchgrass compared to the native cellulosome alone or in combination with wild-type BglA in solution. These results demonstrate the effect of enzyme targeting and its potential for enhanced degradation of cellulosic biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available