4.8 Article

Persistence and uncertainty in the academic career

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1121429109

Keywords

career trajectory; labor market; science of science; tenure computational sociology

Funding

  1. IMT
  2. Keck Foundations
  3. Defense Threat Reduction Agency (DTRA)
  4. Office of Naval Research (ONR)
  5. National Science Foundation (NSF) Chemistry Division [CHE 0911389, CHE 0908218]

Ask authors/readers for more resources

Understanding how institutional changes within academia may affect the overall potential of science requires a better quantitative representation of how careers evolve over time. Because knowledge spillovers, cumulative advantage, competition, and collaboration are distinctive features of the academic profession, both the employment relationship and the procedures for assigning recognition and allocating funding should be designed to account for these factors. We study the annual production n(i)(t) of a given scientist i by analyzing longitudinal career data for 200 leading scientists and 100 assistant professors from the physics community. Our empirical analysis of individual productivity dynamics shows that (i) there are increasing returns for the top individuals within the competitive cohort, and that (ii) the distribution of production growth is a leptokurtic tent-shaped distribution that is remarkably symmetric. Our methodology is general, and we speculate that similar features appear in other disciplines where academic publication is essential and collaboration is a key feature. We introduce a model of proportional growth which reproduces these two observations, and additionally accounts for the significantly right-skewed distributions of career longevity and achievement in science. Using this theoretical model, we show that short-term contracts can amplify the effects of competition and uncertainty making careers more vulnerable to early termination, not necessarily due to lack of individual talent and persistence, but because of random negative production shocks. We show that fluctuations in scientific production are quantitatively related to a scientist's collaboration radius and team efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available