4.8 Article

Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1207832109

Keywords

protein interactions; dispersal; site-directed mutagenesis

Funding

  1. National Institutes of Health Grant [1R01 A107525701A2]

Ask authors/readers for more resources

Dispersion enables biofilm bacteria to transit from the biofilm to the planktonic growth state and to spawn novel communities in new locales. Although the chemotaxis protein BdlA plays a role in the dispersion of Pseudomonas aeruginosa biofilms in response to environmental cues, little is knownabout regulation of BdlA activity or how BdlA modulates the dispersion response. Here, we demonstrate that BdlA in its native form is inactive and is activated upon nonprocessive proteolysis at a ClpP-protease-like cleavage site located between the Per Arnt Sim (PAS) sensory domains PASa and PASb. Activation of BdlA to enable biofilm dispersion requires phosphorylation at tyrosine-238 as a signal, elevated c-di-GMP levels, the chaperone ClpD, and the protease ClpP. The resulting truncated BdlA polypeptide chains directly interact and are required for P. aeruginosa biofilms to disperse. Our results provide a basis for understanding the mechanism of biofilm dispersion that may be applicable to a large number of biofilm-forming pathogenic species. Insights into the mechanism of BdlA function have implications for the control of biofilm-related infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available