4.8 Article

Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1200362109

Keywords

Cd transport; metal binding site; zinc; Zn transporter; Cd toxicity

Funding

  1. Israel Science Foundation [985/07, 485/11]
  2. National Institute of Health [R01 GM065137]
  3. Office of Basic Energy Sciences, Department of Energy [DOE KC0304000]
  4. Kreitman foundation

Ask authors/readers for more resources

Zinc and cadmium are similar metal ions, but though Zn2+ is an essential nutrient, Cd2+ is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn2+ vs. Cd2+ suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn2+ transport, but reject Cd2+, thus constituting the first mammalian metal transporter with a refined selectivity against Cd2+. Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn2+ and Cd2+. A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn2+ transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd2+ by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn2+ and Cd2+, and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd2+ binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available