4.8 Article

Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1212596109

Keywords

inflammation; cell adhesion; cell migration; metabolic diseases

Funding

  1. National Institutes of Health [HL-70963]
  2. American Heart Association, Southwest Affiliate [10PRE3460002]
  3. University of Texas Health Science Center at San Antonio (UTHSCSA)
  4. National Institutes of Health-National Cancer Institute [P30 CA54174]
  5. [0855011F]

Ask authors/readers for more resources

Monocytic adhesion and chemotaxis are regulated by MAPK pathways, which in turn are controlled by redox-sensitive MAPK phosphatases (MKPs). We recently reported that metabolic disorders prime monocytes for enhanced recruitment into vascular lesions by increasing monocytes' responsiveness to chemoattractants. However, the molecular details of this proatherogenic mechanism were not known. Here we show that monocyte priming results in the S-glutathionylation and subsequent inactivation and degradation of MKP-1. Chronic exposure of human THP-1 monocytes to diabetic conditions resulted in the loss of MKP-1 protein levels, the hyperactivation of ERK and p38 in response to monocyte chemoattractant protein-1 (MCP-1), and increased monocyte adhesion and chemotaxis. Knockdown of MKP-1 mimicked the priming effects of metabolic stress, whereas MKP-1 overexpression blunted both MAPK activation and monocyte adhesion and migration induced by MCP-1. Metabolic stress promoted the S-glutathionylation of MKP-1, targeting MKP-1 for proteasomal degradation. Preventing MKP-1 S-glutathionylation in metabolically stressed monocytes by overexpressing glutaredoxin 1 protected MKP-1 from degradation and normalized monocyte adhesion and chemotaxis in response to MCP-1. Blood monocytes isolated from diabetic mice showed a 55% reduction in MKP-1 activity compared with nondiabetic mice. Hematopoietic MKP-1 deficiency in atherosclerosis-prone mice mimicked monocyte priming and dysfunction associated with metabolic disorders, increased monocyte chemotaxis in vivo, and accelerated atherosclerotic lesion formation. In conclusion, we identified MKP-1 as a central redox-sensitive regulator of monocyte adhesion and migration and showed that the loss of MKP-1 activity is a critical step in monocyte priming and the metabolic stress-induced conversion of blood monocytes into a proatherogenic phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available