4.8 Article

Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1200658109

Keywords

neuromuscular junction; time-lapse imaging

Funding

  1. German Excellence Initiative, Deutsche Forschungsgemeinschaft (DFG) [Sonderforschungsbereich SFB 596]
  2. Alexander-von-Humboldt-Foundation
  3. Center for Integrated Protein Science (Munich)
  4. (Bundesministerium fur Bildung und Forschung)
  5. Christopher and Dana Reeve Foundation
  6. DFG [SFB 571, SFB 870]
  7. Federal Ministry of Education and Research (Competence Network Multiple Sclerosis)
  8. Verein Therapieforschung fur MS-Kranke e.V.
  9. Graduate School of Technische Universitat Munchen

Ask authors/readers for more resources

Axonal transport deficits have been reported in many neurodegenerative conditions and are widely assumed to be an immediate causative step of axon and synapse loss. By imaging changes in axonal morphology and organelle transport over time in several animal models of amyotrophic lateral sclerosis (ALS), we now find that deficits in axonal transport of organelles (mitochondria, endosomes) and axon degeneration can evolve independently. This conclusion rests on the following results: (i) Axons can survive despite long-lasting transport deficits: In the SODG93A model of ALS, transport deficits are detected soon after birth, months before the onset of axon degeneration. (ii) Transport deficits are not necessary for axon degeneration: In the SODG85R model of ALS, motor axons degenerate, but transport is unaffected. (iii) Axon transport deficits are not sufficient to cause immediate degeneration: In mice that overexpress wild-type superoxide dismutase-1 (SODWT), axons showchronic transport deficits, but survive. These data suggest that disturbances of organelle transport are not a necessary step in the emergence of motor neuron degeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available