4.8 Article

Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1113342109

Keywords

-

Funding

  1. National Institutes of Health [R01 GM083983-01]
  2. Bill and Melinda Gates Foundation
  3. National Science Foundation [EF-0742373, EF-08-27416]
  4. Science and Technology Directorate, Department of Homeland Security
  5. Fogarty International Center, National Institutes of Health
  6. James S. McDonnell Foundation
  7. Sir Henry Wellcome Fellowship [WT092311MF]
  8. Center for Biologics Evaluation and Research, Food and Drug Administration
  9. Direct For Biological Sciences
  10. Division Of Environmental Biology [0827416] Funding Source: National Science Foundation

Ask authors/readers for more resources

Large-scale immunization has profoundly impacted control of many infectious diseases such as measles and smallpox because of the ability of vaccination campaigns to maintain long-term herd immunity and, hence, indirect protection of the unvaccinated. In the case of human influenza, such potential benefits of mass vaccination have so far proved elusive. The central difficulty is a considerable viral capacity for immune escape; new pandemic variants, as well as viral escape mutants in seasonal influenza, compromise the buildup of herd immunity from natural infection or deployment of current vaccines. Consequently, most current influenza vaccination programs focus mainly on protection of specific risk groups, rather than mass prophylactic protection. Here, we use epidemiological models to show that emerging vaccine technologies, aimed at broad-spectrum protection, could qualitatively alter this picture. We demonstrate that sustained immunization with such vaccines could-through potentially lowering transmission rates and improving herd immunity-significantly moderate both influenza pandemic and seasonal epidemics. More subtly, phylodynamic models indicate that widespread cross-protective immunization could slow the antigenic evolution of seasonal influenza; these effects have profound implications for a transition to mass vaccination strategies against human influenza, and for the management of antigenically variable viruses in general.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available