4.8 Article

A virus capsid component mediates virion retention and transmission by its insect vector

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1109384108

Keywords

arthropod vector transmission; crinivirus; noncirculative transmission; semipersistent transmission; Bemisia tabaci

Funding

  1. University of California, Riverside (UCR), College of Natural and Agricultural Sciences
  2. Los Alamos National Laboratory-UCR

Ask authors/readers for more resources

Numerous pathogens of humans, animals, and plants are transmitted by specific arthropod vectors. However, understanding the mechanisms governing these pathogen-vector interactions is hampered, in part, by the lack of easy-to-use analytical tools. We investigated whitefly transmission of Lettuce infectious yellows virus (LIYV) by using a unique immunofluorescent localization approach in which we fed virions or recombinant virus capsid components to whiteflies, followed by feeding them antibodies to the virions or capsid components, respectively. Fluorescent signals, indicating the retention of virions, were localized in the anterior foregut or cibarium of a whitefly vector biotype but not within those of a whitefly nonvector biotype. Retention of virions in these locations strongly corresponded with the whitefly vector transmission of LIYV. When four recombinant LIYV capsid components were individually fed to whitefly vectors, significantly more whiteflies retained the recombinant minor coat protein (CPm). As demonstrated previously and in the present study, whitefly vectors failed to transmit virions preincubated with anti-CPm antibodies but transmitted virions preincubated with antibodies recognizing the major coat protein (CP). Correspondingly, the number of insects that specifically retained virions preincubated with anti-CPm antibodies were significantly reduced compared with those that specifically retained virions preincubated with anti-CP antibodies. Notably, a transmission-defective CPm mutant was deficient in specific virion retention, whereas the CPm-restored virus showed WT levels of specific virion retention and transmission. These data provide strong evidence that transmission of LIYV is determined by a CPm-mediated virion retention mechanism in the anterior foregut or cibarium of whitefly vectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available