4.8 Article

Demographic history and rare allele sharing among human populations

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1019276108

Keywords

demographic inference; genetic drift; population genetics; human evolution

Funding

  1. Medical Research Council [G1000758] Funding Source: Medline
  2. NHGRI NIH HHS [U54 HG003273, R01 HG003229] Funding Source: Medline
  3. NHLBI NIH HHS [R01 HL072904-08, R01 HL072810-09, R01 HL072810-06, R01 HL072810-03, R01 HL072904, R01 HL072810-01, R01 HL072810-07, R01 HL072810-05A1, R01 HL072810-08, R01 HL072810-02, R01 HL072810, R01 HL072810-04] Funding Source: Medline
  4. Wellcome Trust [085532, 090532] Funding Source: Medline
  5. Medical Research Council [G1000758, G1000758B] Funding Source: researchfish
  6. National Institute for Health Research [NF-SI-0508-10212] Funding Source: researchfish

Ask authors/readers for more resources

High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2-4x coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after similar to 1,000 sequenced chromosomes per population, whereas similar to 2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available