4.8 Article

Random partitioning of molecules at cell division

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1013171108

Keywords

-

Funding

  1. Division of Mathematical Sciences of the National Science Foundation [0748760]
  2. US National Institutes of Health [GM081563-01A]
  3. Division Of Mathematical Sciences
  4. Direct For Mathematical & Physical Scien [0748760] Funding Source: National Science Foundation

Ask authors/readers for more resources

Many RNAs, proteins, and organelles are present in such low numbers per cell that random segregation of individual copies causes large partitioning errors at cell division. Even symmetrically dividing cells can then by chance produce daughters with very different composition. The size of the errors depends on the segregation mechanism: Control systems can reduce low-abundance errors, but the segregation process can also be subject to upstream sources of randomness or spatial heterogeneities that create large errors despite high abundances. Here we mathematically demonstrate how partitioning errors arise for different types of segregation mechanisms and how errors can be greatly increased by upstream heterogeneity but remarkably hard to avoid through controlled partitioning. We also show that seemingly straightforward experiments cannot be straightforwardly interpreted because very different mechanisms produce identical fits and present an approach to deal with this problem by adding binomial counting noise and testing for convexity or concavity in the partitioning error as a function of the binomial thinning parameter. The results lay a conceptual groundwork for more effective studies of heterogeneity among growing and dividing cells, whether in microbes or in differentiating tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available