4.8 Article

Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1018519108

Keywords

vision; single-unit electrophysiology; orienting behavior; cooling deactivation

Funding

  1. National Institutes of Health [NS-039640]
  2. Jeffress Foundation
  3. Canadian Institutes of Health Research

Ask authors/readers for more resources

It is well known that early disruption of sensory input from one modality can induce crossmodal reorganization of a deprived cortical area, resulting in compensatory abilities in the remaining senses. Compensatory effects, however, occur in selected cortical regions and it is not known whether such compensatory phenomena have any relation to the original function of the reorganized area. In the cortex of hearing cats, the auditory field of the anterior ectosylvian sulcus (FAES) is largely responsive to acoustic stimulation and its unilateral deactivation results in profound contralateral acoustic orienting deficits. Given these functional and behavioral roles, the FAES was studied in early-deafened cats to examine its crossmodal sensory properties as well as to assess the behavioral role of that reorganization. Recordings in the FAES of early-deafened adults revealed robust responses to visual stimulation as well as receptive fields that collectively represented the contralateral visual field. A second group of early-deafened cats was trained to localize visual targets in a perimetry array. In these animals, cooling loops were surgically placed on the FAES to reversibly deactivate the region, which resulted in substantial contralateral visual orienting deficits. These results demonstrate that crossmodal plasticity can substitute one sensory modality for another while maintaining the functional repertoire of the reorganized region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available