4.8 Article

Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF)

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1017029108

Keywords

hematopoiesis; NMR spectroscopy; transcriptional activators; intrinsically unstructured domain; transcription factor IIE

Funding

  1. Canadian Institutes of Health Research [MOP-209826]
  2. United States Public Health Service [NIH DK46865]
  3. National Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Erythroid Kruppel-like factor (EKLF) plays an important role in erythroid development by stimulating beta-globin gene expression. We have examined the details by which the minimal transactivation domain (TAD) of EKLF (EKLFTAD) interacts with several transcriptional regulatory factors. We report that EKLFTAD displays homology to the p53TAD and, like the p53TAD, can be divided into two functional subdomains (EKLFTAD1 and EKLFTAD2). Based on sequence analysis, we found that EKLFTAD2 is conserved in KLF2, KLF4, KLF5, and KLF15. In addition, we demonstrate that EKLFTAD2 binds the amino-terminal PH domain of the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and four domains of CREB-binding protein/p300. The solution structure of the EKLFTAD2/Tfb1PH complex indicates that EKLFTAD2 binds Tfb1PH in an extended conformation, which is in contrast to the alpha-helical conformation seen for p53TAD2 in complex with Tfb1PH. These studies provide detailed mechanistic information into EKLFTAD functions as well as insights into potential interactions of the TADs of other KLF proteins. In addition, they suggest that not only have acidic TADs evolved so that they bind using different conformations on a common target, but that transitioning from a disordered to a more ordered state is not a requirement for their ability to bind multiple partners.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available