4.8 Article

Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1108462109

Keywords

antiangiogenesis; epigenetics; nutrient deprivation; tumor microenvironment

Funding

  1. Department of Molecular Oncology, Tokyo Dental and Medical University
  2. Research Center for Advanced Science and Technology, University of Tokyo
  3. Ministry of Education, Culture, Sports, Science, and Technology of Japan [17014020]
  4. Grants-in-Aid for Scientific Research [17014020, 10J40024] Funding Source: KAKEN

Ask authors/readers for more resources

Histone demethylase JHDM1D (also known as KDM7A) modifies the level of methylation in histone and participates in epigenetic gene regulation; however, the role of JHDM1D in tumor progression is unknown. Here, we show that JHDM1D plays a tumor-suppressive role by regulating angiogenesis. Expression of JHDM1D was increased in mouse and human cancer cells under long-term nutrient starvation in vitro. Expression of JHDM1D mRNA was increased within avascular tumor tissue at the preangiogenic switch, along with increased expression of angiogenesis-regulating genes such as Vegf-A. Stable expression of JHDM1D cDNA or siRNA silencing of JHDM1D in cancer cells did not affect cell proliferation, anchorage-independent cell growth, or cell cycle progression in vitro. Notably, JHDM1D-expressing mouse melanoma (B16) and human cervical carcinoma (HeLa) cells exhibited significantly slower tumor growth in vivo compared with the original cells. This reduction in tumor growth was associated with decreased formation of CD31(+) blood vessels and reduced infiltration of CD11b(+) macrophage linage cells into tumor tissues. Expression of multiple angiogenic factors such as VEGF-B and angiopoietins was decreased in tumor xenografts of JHDM1D-expressing B16 and HeLa cells. Our results provide evidence that increased JHDM1D expression suppressed tumor growth by down-regulating angiogenesis under nutrient starvation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available