4.8 Article

Growth cones as soft and weak force generators

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1106145108

Keywords

motility; neuron; elasticity; mechanics; scanning force microscopy

Funding

  1. Deutsche Forschungsgemeinschaft of the European Union
  2. Alexander von Humboldt Foundation

Ask authors/readers for more resources

Many biochemical processes in the growth cone finally target its biomechanical properties, such as stiffness and force generation, and thus permit and control growth cone movement. Despite the immense progress in our understanding of biochemical processes regulating neuronal growth, growth cone biomechanics remains poorly understood. Here, we combine different experimental approaches to measure the structural and mechanical properties of a growth cone and to simultaneously determine its actin dynamics and traction force generation. Using fundamental physical relations, we exploited these measurements to determine the internal forces generated by the actin cytoskeleton in the lamellipodium. We found that, at timescales longer than the viscoelastic relaxation time of tau = 8.5 +/- 0.5 sec, growth cones show liquid-like characteristics, whereas at shorter time scales they behaved elastically with a surprisingly low elastic modulus of E = 106 +/- 21 Pa. Considering the growth cone's mechanical properties and retrograde actin flow, we determined the internal stress to be on the order of 30 pN per mu m(2). Traction force measurements confirmed these values. Hence, our results indicate that growth cones are particularly soft and weak structures that may be very sensitive to the mechanical properties of their environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available