4.8 Article

Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1015959108

Keywords

-

Funding

  1. Japan Society for the Promotion of Science
  2. Ministry of Education, Culture, Sports, Science, and Technology, Japan
  3. Grants-in-Aid for Scientific Research [22227002, 19108002, 19107002, 22570151] Funding Source: KAKEN

Ask authors/readers for more resources

The circadian clock is phase-delayed or -advanced by light when given at early or late subjective night, respectively. Despite the importance of the time-of-day-dependent phase responses to light, the underlying molecular mechanism is poorly understood. Here, we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland, which consists of light-sensitive clock cells representing a prototype of the clock system. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors heat shock factor (HSF) 1, HSF2, and X-box-binding protein 1 (XBP1) were strongly activated when a light pulse was given at late subjective night. In contrast, the light pulse at early subjective night caused prominent induction of E4bp4, a key regulator in the phase-delaying mechanism of the pineal clock, along with activation of a large group of cholesterol biosynthetic genes that are targets of sterol regulatory element-binding protein (SREBP) transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that, in turn, transactivated E4bp4 expression, linking SREBP with the light-input pathway of the pineal clock. As an output of light activation of cholesterol biosynthetic genes, we found light-stimulated pineal production of a neurosteroid, 7 alpha-hydroxypregnenolone, demonstrating a unique endocrine function of the pineal gland. Intracerebroventricular injection of 7 alpha-hydroxypregnenolone activated locomotor activities of chicks. Our study on the genome-wide gene expression analysis revealed time-of-day-dependent light activation of signaling pathways and provided molecular connection between gene expression and behavior through neurosteroid release from the pineal gland.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available