4.8 Article

Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1018674108

Keywords

cytokinesis; cytoskeleton; DNA replication; cell cycle

Funding

  1. National Institutes of Health (NIH) [GM57059, AI083365, AI069007, AI057754]
  2. Massachusetts Life Science Center
  3. Burroughs Wellcome Fund

Ask authors/readers for more resources

The tubulin-like FtsZ protein initiates assembly of the bacterial cytokinetic machinery by polymerizing into a ring structure, the Z ring, at the prospective site of division. To block Z-ring formation over the nucleoid and help coordinate cell division with chromosome segregation, Escherichia coli employs the nucleoid-associated division inhibitor, SlmA. Here, we investigate the mechanism by which SlmA regulates FtsZ assembly. We show that SlmA disassembles FtsZ polymers in vitro. In addition, using chromatin immunoprecipitation (ChIP), we identified 24 SlmA-binding sequences (SBSs) on the chromosome. Remarkably, SlmA binding to SBSs dramatically enhanced its ability to interfere with FtsZ polymerization, and ChIP studies indicate that SlmA regulates FtsZ assembly at these sites in vivo. Because of the dynamic and highly organized nature of the chromosome, coupling SlmA activation to specific DNA binding provides a mechanism for the precise spatiotemporal control of its anti-FtsZ activity within the cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available