4.8 Article

tRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1109539108

Keywords

aminoacyltransferase; uridyl pentapeptide; peptidyl carrier protein

Funding

  1. NIH [GM49338, GM067725-08]

Ask authors/readers for more resources

Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics with antipseudomonal activities through inhibition of the translocase MraY in bacterial cell wall assembly. The biosynthetic gene cluster for pacidamycins has recently been identified through genome mining of the producer Streptomyces coeruleorubidus, and the highly dissociated nonribosomal peptide assembly line for the uridyl tetrapeptide scaffold of pacidamycin has been characterized. In this work a hypothetical protein PacB, conserved in known uridyl peptide antibiotics gene clusters, has been characterized by both genetic deletion and enzymatic analysis of the purified protein. PacB catalyzes the transfer of the alanyl residue from alanyl-tRNA to the N terminus of the tetrapeptide intermediate yielding a pentapeptide on the thio-templated nonribosomal peptide synthetase (NRPS) assembly line protein PacH. PacB thus represents a new group of tRNA-dependent peptide bond-forming enzymes in secondary metabolite biosynthesis in addition to the recently identified cyclodipeptide synthases. The characterization of PacB completes the assembly line reconstitution of pacidamycin pentapeptide antibiotic scaffolds, bridging the primary and secondary metabolic pathways by hijacking an aminoacyl-tRNA to the antibiotic biosynthetic pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available