4.8 Article

Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1112052108

Keywords

glutamate; field excitatory postsynaptic potential; diolistic neuron labeling; whole-cell recording; self-administration

Funding

  1. National Institutes of Health [DA015369, DA003906]

Ask authors/readers for more resources

Persistent relapse to addictive drugs constitutes the most challenging problem in addiction therapy, and is linked to impaired prefrontal cortex regulation of motivated behaviors involving the nucleus accumbens. Using a rat model of heroin addiction, we show that relapse requires long-term potentiation (LTP)-like increases in synaptic strength in the prefrontal cortex projection to the nucleus accumbens. The increased synaptic strength was paralleled by dendritic spine enlargement in accumbens spiny neurons and required up-regulated surface expression of NMDA2b-containing receptors (NR2B). Accordingly, blocking NR2B before reinstating heroin-seeking prevented the induction of LTP-like changes in spine remodeling and synaptic strength, and inhibited heroin relapse. These data show that LTP-like neuroplasticity in prefrontal-accumbens synapses is initiated by NR2B stimulation and strongly contributes to heroin relapse. Moreover, the data reveal NR2B-containing NMDA receptors as a previously unexplored therapeutic target for treating heroin addiction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available