4.8 Article

Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1102294108

Keywords

protein engineering; molecular recognition; posttranslational modification; antibody mimic; fibronectin type III domain

Funding

  1. National Institutes of Health [R01-GM72688, R01-GM090324, R21-CA132700]
  2. University of Chicago Cancer Research Center
  3. Michigan Economic Development Corporation
  4. Michigan Technology Tri-Corridor [085P1000817]
  5. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  6. [T32 GM007183-32A1]

Ask authors/readers for more resources

Discriminating closely related molecules remains a major challenge in the engineering of binding proteins and inhibitors. Here we report the development of highly selective inhibitors of small ubiquitin-related modifier (SUMO) family proteins. SUMOylation is involved in the regulation of diverse cellular processes. Functional differences between two major SUMO isoforms in humans, SUMO1 and SUMO2/3, are thought to arise from distinct interactions mediated by each isoform with other proteins containing SUMO-interacting motifs (SIMs). However, the roles of such isoform-specific interactions are largely uncharacterized due in part to the difficulty in generating high-affinity, isoform-specific inhibitors of SUMO/SIM interactions. We first determined the crystal structure of a monobody, a designed binding protein based on the fibronectin type III scaffold, bound to the yeast homolog of SUMO. This structure illustrated a mechanism by which monobodies bind to the highly conserved SIM-binding site while discriminating individual SUMO isoforms. Based on this structure, we designed a SUMO-targeted library from which we obtained monobodies that bound to the SIM-binding site of human SUMO1 with K(d) values of approximately 100 nM but bound to SUMO2 400 times more weakly. The monobodies inhibited SUMO1/SIM interactions and, unexpectedly, also inhibited SUMO1 conjugation. These high-affinity and isoform-specific inhibitors will enhance mechanistic and cellular investigations of SUMO biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available