4.8 Article

An antigenic peptide produced by reverse splicing and double asparagine deamidation

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1101892108

Keywords

antigen processing; peptide splicing; tumor antigen

Funding

  1. European Community [LSHC-2006-518234]
  2. Walloon Region Programme d'Excellence CIBLES
  3. Fonds J. Maisin (Belgium)
  4. Fondation contre le Cancer (Belgium)
  5. Fonds National de la Recherche Scientifique (FNRS
  6. Belgium)
  7. FNRS

Ask authors/readers for more resources

A variety of unconventional translational and posttranslational mechanisms contribute to the production of antigenic peptides, thereby increasing the diversity of the peptide repertoire presented by MHC class I molecules. Here, we describe a class I-restricted peptide that combines several posttranslational modifications. It is derived from tyrosinase and recognized by tumor-infiltrating lymphocytes isolated from a melanoma patient. This unusual antigenic peptide is made of two noncontiguous tyrosinase fragments that are spliced together in the reverse order. In addition, it contains two aspartate residues that replace the asparagines encoded in the tyrosinase sequence. We confirmed that this peptide is naturally presented at the surface of melanoma cells, and we showed that its processing sequentially requires translation of tyrosinase into the endoplasmic reticulum and its retrotranslocation into the cytosol, where deglycosylation of the two asparagines by peptide-N-glycanase turns them into aspartates by deamidation. This process is followed by cleavage and splicing of the appropriate fragments by the standard proteasome and additional transport of the resulting peptide into the endoplasmic reticulum through the transporter associated with antigen processing (TAP).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available