4.8 Article

Greenhouse gas mitigation by agricultural intensification

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0914216107

Keywords

agriculture; greenhouse gas emissions; land use change; climate change mitigation; carbon price

Funding

  1. Stanford University
  2. Carnegie Institution
  3. NASA [NNX08AV25G]
  4. NASA [NNX08AV25G, 94938] Funding Source: Federal RePORTER

Ask authors/readers for more resources

As efforts to mitigate climate change increase, there is a need to identify cost-effective ways to avoid emissions of greenhouse gases (GHGs). Agriculture is rightly recognized as a source of considerable emissions, with concomitant opportunities for mitigation. Although future agricultural productivity is critical, as it will shape emissions from conversion of native landscapes to food and biofuel crops, investment in agricultural research is rarely mentioned as a mitigation strategy. Here we estimate the net effect on GHG emissions of historical agricultural intensification between 1961 and 2005. We find that while emissions from factors such as fertilizer production and application have increased, the net effect of higher yields has avoided emissions of up to 161 gigatons of carbon (GtC) (590 GtCO(2)e) since 1961. We estimate that each dollar invested in agricultural yields has resulted in 68 fewer kgC (249 kgCO(2)e) emissions relative to 1961 technology ($14.74/tC, or similar to$4/tCO(2)e), avoiding 3.6 GtC (13.1 GtCO(2)e) per year. Our analysis indicates that investment in yield improvements compares favorably with other commonly proposed mitigation strategies. Further yield improvements should therefore be prominent among efforts to reduce future GHG emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available