4.8 Article

LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912986107

Keywords

innate immunity; type I interferon; virus infection

Funding

  1. Special Coordination Funds of the Japanese Ministry of Education, Culture, Sports, Science and Technology
  2. Ministry of Health, Labour and Welfare in Japan
  3. Global Center of Excellence Program of Japan
  4. National Institutes of Health [P01 AI070167]
  5. Grants-in-Aid for Scientific Research [20112009] Funding Source: KAKEN

Ask authors/readers for more resources

RNA virus infection is recognized by retinoic acid-inducible gene (RIG)-I- like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm. RLRs are comprised of N-terminal caspase-recruitment domains (CARDs) and a DExD/H-box helicase domain. The third member of the RLR family, LGP2, lacks any CARDs and was originally identified as a negative regulator of RLR signaling. In the present study, we generated mice lacking LGP2 and found that LGP2 was required for RIG-I- and MDA5-mediated antiviral responses. In particular, LGP2 was essential for type I IFN production in response to picornaviridae infection. Overexpression of the CARDs from RIG-I and MDA5 in Lgp2(-/-) fibroblasts activated the IFN-beta promoter, suggesting that LGP2 acts upstream of RIG-I and MDA5. We further examined the role of the LGP2 helicase domain by generating mice harboring a point mutation of Lys-30 to Ala (Lgp2(K30A/K30A)) that abrogated the LGP2 ATPase activity. Lgp2(K30A/K30A) dendritic cells showed impaired IFN-beta productions in response to various RNA viruses to extents similar to those of Lgp2(-/-) cells. Lgp2(-/-) and Lgp2(K30A/K30A) mice were highly susceptible to encephalomyocarditis virus infection. Nevertheless, LGP2 and its ATPase activity were dispensable for the responses to synthetic RNA ligands for MDA5 and RIG-I. Taken together, the present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available