4.8 Article

Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1010564107

Keywords

fragile X syndrome; dendritic mRNA targeting; local translation

Funding

  1. National Institutes of Health [MH35321, HD002274-40S1]
  2. Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International

Ask authors/readers for more resources

Fragile X syndrome is caused by the absence of functional fragile X mental retardation protein (FMRP), an RNA binding protein. The molecular mechanism of aberrant protein synthesis in fmr1 KO mice is closely associated with the role of FMRP in mRNA transport, delivery, and local protein synthesis. We show that GFP-labeled Fmr1 and CaMKII alpha mRNAs undergo decelerated motion at 0-40 min after group I mGluR stimulation, and later recover at 40-60 min. Then we investigate targeting of mRNAs associated with FMRP after neuronal stimulation. We find that FMRP is synthesized closely adjacent to stimulated mGluR5 receptors. Moreover, in WT neurons, CaMKII alpha mRNA can be delivered and translated in dendritic spines within 10 min in response to group I mGluR stimulation, whereas KO neurons fail to show this response. These data suggest that FMRP can mediate spatial mRNA delivery for local protein synthesis in response to synaptic stimulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available